
Browsium whitepaper: Page: 1

Managing Java Security in the Enterprise Revision 2015-07-03

Managing Java Security in the Enterprise

Introduction

Since the introduction of Java, enterprise organizations have relied on it as a powerful development

platform on which to build internal line of business applications. Java’s ‘write once, run anywhere’

promise theoretically offered a technological hedge against the challenges of building cross platform

applications, with their associated complex matrix of dependencies. This promise was realized in the

early days of Java for a large number of standalone Java applets running directly on client operating

systems.

Over time, developers shifted their focus to web-based

applications built on the Java Runtime Environment

(JRE) and run in a browser. These web-based Java

applications shared many similarities with standalone

Java applets, but had to be packaged and delivered

differently for the web. This difference resulted in a

variety of compatibility and security issues caused by

JRE incompatibilities from version to version and by

unlimited threat vectors on the web.

Despite these issues, Java application development remains incredibly common within medium and

large organizations. As a result, broad Java deployments to all end user PCs have become the norm –

Java is nearly always part of an organization’s ‘standard’ desktop image. In addition to enterprise

adoption, consumer use of Java is huge. Oracle claims more than 3 billion devices running Java

globally.

That large target population is very attractive to hackers, and Java has a long history of security

vulnerabilities. Since 2010 there have been at least 376 reported security vulnerabilities in the various

revisions of Java 7 and 8. In 2014 alone, there were 133 reported vulnerabilities, resulting in roughly 25

updates each for Java 7 and Java 8. Most of those updates were delivered in quarterly update

packages, but several critical vulnerabilities required updating every few weeks to remain fully secure.

In response to ongoing Java security threats, most Information Security organizations have pressed for

regular internal updates to Java versions on end user PCs. This drives two primary challenges for most

organizations: change management processes and application compatibility. In reality the two are

often linked, but they are distinct issues and should be analyzed separately. This paper will overview

each challenge individually and provide detailed guidance for managing Java security in the enterprise

using a combination of sound security practices and Browsium’s browser management platform.

Browsium whitepaper: Page: 2

Managing Java Security in the Enterprise Revision 2015-07-03

Challenge I: Java updates and change management

Most organizations have implemented a change management process that utilizes a set of steps to

ensure documentation and validation of any changes made to internal systems. This process is critical

to ensuring system stability, avoiding downtime, and minimizing operational risk. At the same time,

these steps take time to complete and that creates a

window of security exposure. Many companies require at

least 21 business days to complete all steps in their

change management process. From a Java security

standpoint, that can be an excessive and unacceptable

amount of time for the organization to be at risk of

attack.

To address this security exposure, organizations are

faced with an operational challenge and must choose

between two unpalatable options: either bypass the

change management process or reduce the security mandate. Neither option is a viable choice for

most organizations. The risk of deploying Java updates without proper validation and testing could

result in severe impacts to the business if systems fail or operate incorrectly. Accepting security

exposure during the time required to complete the change management process could result in

security breaches and potential financial or reputational liability impacts.

Challenge II: Java updates and application compatibility

The Java platform is designed to avoid dependency issues by offloading many environmental

components and interactions to the JRE, rather than being coded directly by the developer. However,

updates to the JRE are common, often resulting in feature behavior changes or even feature

deprecation. These feature changes are typically caused by a modification to the JRE in response to a

security vulnerability. Applications that make use of one of these impacted features will no longer

work in the new version of Java, and the organization must decide if they will remain on the previous

(working) version of the JRE or upgrade to the more secure JRE and rewrite the applications.

This choice leaves the organization with another oppositional challenge – continue running an older

JRE and accept the security risk, or upgrade the JRE and accept the development costs and impacts of

rewriting the affected applications. Making the choice to rewrite applications comes with additional

complications as development can’t be completed, tested, and accepted into deployment instantly.

The time required to perform these tasks puts the organization at risk.

Fulfilling the security mandate by rewriting applications also introduces direct and indirect costs. Some

department, most often the business unit to which the application belongs, must accept the costs for

developers to rewrite the application. Most business units don’t have budget for this type of expense,

especially when the development work would simply redesign the application and not provide any

new functionality. Every development organization has limited resources, so the organization will

Browsium whitepaper: Page: 3

Managing Java Security in the Enterprise Revision 2015-07-03

struggle to deliver new projects when resources have been reallocated from new project work to these

security-mandated maintenance releases.

Looking at the JRE version update cadence for Java 7 from 2011 to early 2015 (a total of 76 updates),

it is reasonable to assume that a new version of the JRE will be released before the organization has

completed development, testing, and acceptance of the quickly outdated JRE they were planning to

deploy. This ‘Java treadmill effect’ could easily stagnate an organization’s ability to move the business

forward and deploy new technologies that enable the organization to grow.

The Answer: Secure Java Management

For most organizations, the answer to competing

compatibility and security objectives and challenges

is simple – find a solution that enables the

organization to keep running the older, known-

compatible JRE versions in a secure and isolated

environment. This approach will resolve business

concerns around compatibility, avoid extra expense

and the ‘update treadmill’, and meet the security

mandate to ensure older, insecure JRE versions are

not exposed to external threats. Unfortunately, while

this works to secure standalone Java applets, it will not work to secure web-based Java applets. An

understanding of Java’s history clarifies why this is the case.

Standalone Java applets

A key capability of the Java platform – the side by side installation of various JRE versions – helps to

enable running older versions of Java in a secure and isolated environment. Oracle (then Sun

Microsystems) originally designed Java to allow any vendor or in-house developer to build Java-based

software solutions, then redistribute customized JRE configurations with their software to ensure the

proper operation and settings needed for their applications. By design, the JRE is loaded from the

application folder prior to looking for a general-purpose, system-installed version of Java. Therefore,

the proper JRE is always paired with the application. This solution works perfectly for standalone Java

applets that are hosted by the operating system.

Securing web-based Java applets

The strategy to secure and isolate standalone Java applets fails to meet the needs of web-based Java

applets. To understand why, it is important to know how web-based Java applets are loaded by a web

browser. When a webpage contains a Java applet tag, which can be specified as either CODEBASE or

APPLET, the browser is triggered to load the JRE add-on. By design, the browser will load the latest

installed version of the JRE add-on by default. This ensures the JRE that is loaded is the most current

and secure version available on that system, but it causes issues for Java applications that require a

Browsium whitepaper: Page: 4

Managing Java Security in the Enterprise Revision 2015-07-03

specific JRE version to function properly. Without hard-coding Java version strings (a bad choice as we

will see shortly), the web application is subject to failure when the JRE version is updated. Even for

applications that include hard-coded versioning, Oracle has recently taken security efforts in newer

JRE versions to prevent older JRE versions from loading.

This approach was well intentioned, but an organization can’t rely on using hard-coded Java

versioning as it leaves an extensive security hole open to attack. By permitting trusted internal or

external websites to specify and load older, known-insecure versions of Java, the organization also

enables untrusted, unknown external websites (e.g., public Internet sites) to specify an older JRE

version and launch attacks against it. In addition, because Oracle has continued to block loading of

out-of-date JRE versions, forcing users to run the most current version, they have taken a more

aggressive warning and end user notification approach to block loading older JRE versions.

All of this leaves many organizations with an identified Java security management approach, but a lack

of tools to manage Java in the way needed to meet business and security requirements. Because

Java’s design and architecture prevent addressing security and management concerns ‘out of the box’,

organizations must look for third party solutions.

The Solution: Browser management with Browsium Ion

Browsium Ion was built to address all of these Java security issues via its

browser management platform. The central design principle of Ion is to

provide the web application environment needed by opening a browser

instance with the specific configuration required for that application. This

approach enables Ion to open a process-isolated instance of Internet

Explorer, complete with the required JRE version, so line of business

application will function as needed. This client-side approach requires no

changes to the application, and legacy JRE versions are prohibited from

being exposed to unapproved websites. In addition, Ion eliminates the end user confusion caused by

JRE warning messages typically required to bypass legacy version blocking.

Opt-in rules model

The core of the Ion solution is an ‘opt-in’ rules model, whereby the defined configurations are loaded

only when a specified criteria is matched. The Ion rules model examines network requests made by

users and responds to navigation events triggered by their actions. When a condition, or set of

conditions, are matched, the Ion Broker launches an Internet Explorer process with the specified

configuration. By the nature of the application instantiation process, Ion ensures the Internet Explorer

and associated JRE instances are process-isolated from other Internet Explorer processes, preventing

any cross process communication attacks. The Ion rules engine further prevents attack by ensuring

that Internet Explorer instances can only be launched or accessed by the Ion Broker process invoking

them, eliminating the ability for unauthorized websites to invoke any legacy components.

Browsium whitepaper: Page: 5

Managing Java Security in the Enterprise Revision 2015-07-03

Facilitates change management

Ion resolves the security/process conflict inherent in change management by enabling an organization

to make business decisions rather than technology decisions. Ion offers enterprise IT the ability to

determine the risk associated with a Java update and make the choice in how to proceed. Without Ion

in place, an organization would need to make a choice between updating and possibly breaking

applications, or staying on the legacy version and assuming the security risk until development and

testing are done. Ion changes the equation, enabling the organization to specify a specific JRE version

for a given web application (or set of applications) and disable Java for unknown or unauthorized

websites. Alternatively, the organization can standardize on a known-compatible version of Java (that

has already been tested against all internal LOB applications) and always update to the most current,

secure version as soon as it is released by Oracle for use on Internet sites. Both approaches ensures

external threats are mitigated, while internal business-critical tasks remain unaffected. The change

management process can continue normally and IT can take the time needed to ensure systems are

not impacted, all while remaining fully secure.

Addresses multi-version JRE add-on loading

Ion addresses the multi-version JRE add-on loading

issue by taking advantage of the broker

instantiation process architecture. Where the

browser is normally only able to load the most

current JRE version installed, Ion has the ability to

bypass that behavior and specify which JRE version

is loaded into the specific Internet Explorer

instance. Ion does this by securely hosting and

replacing the required JRE components at runtime.

Using this model, Ion ensures each web application has access to the required JRE version, regardless

of the default version installed on the system. At the same time, this approach enables an organization

to have numerous legacy JRE versions securely installed on end user PCs, without worrying about

insecure versions or their components being exposed to unauthorized websites. Working in

conjunction with the JRE legacy version blocking solution, non-Ion managed websites always load the

default system JRE version, which is configured to prevent the loading of any legacy components if the

remote website attempts to force that behavior. This defensive, in-depth strategy helps protect

systems from threats at every attack angle.

Easy to manage Java security

Lastly, Ion makes it easy to manage Java security by integrating and encompassing Internet Explorer

and Java functionality. Taking this approach helps organizations reduce the amount of customization

or duplication of configurations needed in deployments. Since Ion settings are a superset of Internet

Explorer and Java settings, Ion-managed instances reflect all of the same organizational default

settings and only need to be configured for exceptions or overrides that may be needed beyond those

defaults. In addition, this design offers an enhanced defense-in-depth approach to Java security by

Browsium whitepaper: Page: 6

Managing Java Security in the Enterprise Revision 2015-07-03

incorporating all of the enhancements Oracle makes in the JRE, instead of recreating them and

potentially introducing new vulnerabilities.

Summary: Browsium Ion delivers web-based

Java security and compatibility

Traditional approaches to security management have left enterprise IT facing the dilemma of choosing

between security and compatibility. Browsium Ion eliminates the need to make that choice –

organizations can now have both. Updates can be deployed quickly to keep IT infrastructure secure

while retaining the required legacy versions of Java for compatibility. Enterprises can upgrade business

applications when the business requires it, not when Java version changes force it to happen.

To learn more about Browsium Ion and its Java management and web application remediation

capabilities, visit www.browsium.com/ion/ where you can download the Browsium Ion Evaluation Kit.

 Browsium, Inc.

8201 164th Ave. NE, Suite 200

Redmond, WA 98052

+1.425.285.4424

sales@browsium.com

http://www.browsium.com/ion/

